> Esperante!

Perigramme, von Epizykeln gezeichnet

Es gibt noch eine andere Möglichkeit, Kreise um Kreise kreisen zu lassen.

Rpllkreis

Zur Erzeugung von Perizykloiden rollte ein Kreis mit seiner Peripherie auf dem Umfang eines anderen Kreises ab - außen oder innen.





Epizykel

Der Epizykel ist ein Kreis, dessen Mittelpunkt wie ein Planet auf der Peripherie eines anderen Kreises umläuft.
Diese Ähnlichkeit zu Planetenbahnen wurde in den Zeiten vor Kopernikus zur Modellierung der scheinbaren Planetenbewegungen durch Epizykeln benutzt.

Natürlich kann sich auch der zweite Kreis um seinen Mittelpunkt drehen. Erst dadurch bekommen die zwei Kreise (bildgebend) Sinn. Er kann sich in der gleichen Richtung wie der erste Kreis oder entgegengesetzt drehen, schneller oder langsamer als dieser. Die Winkelgeschwindigkeiten sind frei wählbar. Auch das Verhältnis der Radien kann beliebig variieren. Nur macht es im Unterschied zu den Zykloiden keinen Sinn, den zeichnenden Punkt anderswohin zu verlegen als auf die Peripherie des letzten umlaufenden Kreises. Dessen Durchmesser spielt beim Umlauf keine Rolle als abrollende Distanz, sondern nur als Abstandsangabe des schreibenden Punktes. Der Radius des letzten Kreises ist also mehr mit a als mit r bei den Rollkreisen zu vergleichen.

Es brauchen sich nicht nur zwei Kreise umeinander zu drehen wie der Rollkreis um den Leitkreis, sondern hier können beliebig viele wie in einer Kette hintereinandergeschaltet sein. In meinem (DOS-)Programm epizykel.exe, das Sie sich herunterladen können, habe ich bis zu 6 Kreisen in Folge vorgesehen. Die Figuren (Perigramme), die der zeichnende Punkt auf der Peripherie des letzten Kreises zeichnet, sind dann mannigfaltig genug.

Als letzte Variable kannn man die Ausgangsstellungen der Kreise wählen, also den Peripheriepunkt, auf dem sich der Mittelpunkt des jeweiligen folgenden Kreises zu Anfang befindet und beim äußersten Kreis der zeichnende Punkt. Diese Punkte werden entsprechend dem kartesischen Koordinatensystem bzw. dem Einheitskreis vorgegeben. 0° liegt rechts in der Höhe y des Mittelpunktes. Der (positive) Drehsinn ist links, d.h. gegen den Uhrzeigersinn. 90° liegt über dem Mittelpunkt, 180° links davon und 270° genau darunter.

Jede mögliche Konfigurationen wird definiert durch die Angaben des Radius (r), des eben erläuterten Startwinkels (w) und der Winkelgeschwindigkeit (Grad pro Takt), deren Vorzeichen die Drehrichtung angibt, für jeden beteiligten Kreis.

Die Figur, die der zeichnende Punkt auf der Peripherie des letzten Kreies bzw. Epizykels zeichnet, bezeichne ich als Perigramm.

Für den nachstehend abgebildeten Dreikreis-Epizykel sieht das so aus:

r1 = 4 r2= 2 r3= 1
w1 = 90 w2 = 90 w3 = 90
g1 = 0.1 g2 = -1 g3 = 2

Als Kurzformel empfiehlt sich dafür die Schreibweise:
4, 2, 1 / 90 / .1, -1, 2

Die Figur erinnert an ein kleines Tannenwäldchen oder einen Verkaufsstand von Weihnachtsbäumen und zeigt, dass den Perigrammen nicht immer die Kreise anzusehen sind. Besonders neigen sie zu Spitzen und Konkavitäten, wenn einzelne Kreise sich gegenläufig drehen.

Die Winkelgeschwindigkeiten sollen möglichst klein gehalten ("gekürzt") werden, um Verzerrungen durch große Schritte zu vermeiden.

Die Zahl der Takte muss groß genug sein, um (mindestens) einen Umlauf voll darzustellen, aber nicht zu groß, damit sich Irregularitäten nicht überschneiden. Einige tausend Takte sind erforderlich, stellen aber heutzutage kein Zeitproblem dar.




Lassen Sie sich die nachstehenden Perigramme als Beispiele der Formenfülle zeigen:

Schräger Reifen 1.5, 3, 1.5, 1 / 0,90,0,180/ .2, -2, 2, .2
Pilz 5, 2.5, 1, 1.5 / 90 / .2, .6, -.8, .2
Index-Bild 3.75, 1.125, 1 / 90 / .2, 1.5, -2.5
Art Deco 3.75, 1.125, 1 / 90 / .2, -1.5, -2.5
Ballett 1, 1, 1.4, 1.5 / 180, , 270, , / .2, -3, -.2
Zierleiste 4, 2,1 / 90 / .2, -6, 4 n = 24, o= 4

Als Zierleisten oder Schmuckband wird ein Perigramm nach jedem n-ten Takt um x Pixel nach links verschoben.

Zum Download wird das (DOS-)Programm epizykel.exe empfohlen, mit dem sie selbst Perigramme (und Zierleisten) darstellen können sowie ein Demo-Programm epizcoll.exe, das 120 verschiedene Perigramme zeigt. Wer alle 9 von mir hergestellten Programme zur Thematik Zykloiden und Perigramme herunterladen will, kann das hier tun. Sie können sich auch eine Beschreibung dieser Programme ansehen.

Und weiter geht es zu einer letzten Seite übergreifender Synthese !

Zum Menü Varia

Zum Stichwortverzeichnis

letzte inhaltliche Änderung am 19.8.2001

Resumo en Esperanto: Diference de la cikloidoj ^ce la epicikloj rondiras la diametro de cirklo sur la periferio de alia cirklo - kvazaü planeta orbito. Povas esti pli ol du cirkloj (en mia haveblaj programoj epizykel.exe kaj epizcoll.exe estas ^gis 6 cirkloj unu post alia). La diametro de la plej ekstera cirklo nur markas la distancon de la desegnanta punkto de la lastcirkla diametro. ^Gi rondiras planetece kaj ^gia spuro montras figuron, kiun mi nomas perigramo.Depende de la nombroj de epiciklocikloj, iliaj radiusoj, iliaj turndirektoj, liliaj komencaj punktoj (startpozicioj) sur la koncerna antaüa cirkloperiferio kaj la turnrapideco (gradoj po takto) desegni^gas nenombreblaj diversaj perigramoj, parte belaj aü frapaj figuroj kaj ornamentoj. Kelkajn vi vidas sur tiu pa^go ^ci same kun iliaj formuloj.